Electrochemical Properties of Coal Tar Pitch based MCMB

Jeong-Kwon Suh*, Ji-Sook Hong and Jung-Min Lee

Applied & Engineering Chemistry Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejeon 305-600, Korea
*e-mail: jsuh@kRICT.re.kr
(Received March 22, 2004; Accepted July 5, 2004)

Abstract

MCMB (Mesocarbon microbeads) is a kind of anode material for lithium-ion secondary battery. MCMB charge/discharge cycle stability is one of the important criterion at lithium-ion battery operation. In this study, the cycling stability of a lithium-ion secondary battery has been examined. MCMB was made by the direct solvent extraction method. After the MCMB was carbonized and graphitized, the measurement of charge/discharge capacity and efficiency were carried out. In the result, discharge capacity of MCMB in the initial cycle was above 290.0 mAh/g. After the second cycle, efficiency of charge/discharge MCMB was about 98%. These results were similar to the commercial MCMB product.

Keywords:

1. 서 론

정보화 시대가 대두됨에 따라 전지는 동력 공급원으로 장남 감에서부터 노트북 컴퓨터 등의 첨단 제품에 이르기까지 모든 무선·휴대형 제품에 필요하다. 이에 따라 전지를 소형·경량화하고 cycle 수명 및 안정성을 향상시키기 위한 노력이 끊임없이 이루어지고 있다[1-3].

리튬은 불활행 특성과 낮은 비도 때문에 전지재료로서 높은 관심을 가지고 있는 물질이다. 구체적으로 기존의 재래식 전지에 비해 에너지 밀도가 크고, 발전 전압이 높으며, 낮은 자가 방전율과 광범위한 온도 범위 내에서 사용이 가능하다는 장점을 가지고 있다. 1차 전지에서는 이미 1960년대부터 응용과 비이온 전해액에 리튬 금속을 사용하였으며, 81년에는 2차 전지용 재료로서 리튬 금속이 개발되었다. 그러나 리튬 금속을 2차 전지의 응용에 사용한 경우, 방전전에 따라 리튬이 dendrite 형태로 성장하여 내부 단락(short) 현상, 용량 및 사이를 특성 저하 등이 발생할 수 있으며, 또한 리튬의 휘발 온도가 낮아 안정성에도 문제가 있다. 특히 방전전에 생기는 dendrite는 금속전지로 한 경우 생성 속도가 빠르기 때문에 금속 충전을 할 수 없으며, 리튬 금속은 방전 전용도를 크게 줄여서 사이를 대비하여 본래의 용량을 제공할 수 없는 문제점이 생겼다. 이러한 문제점은 탄소재료를 사용함으로써 해결이 가능하였다. 1991년에 일본의 소니 에너지텍(주)에 의해 리튬 2차 전지에 hard carbon을 응용활성질로 사용한 전지가 상용화되면서 새로운 전지 활성질로서 탄소재료의 역할이 중요하신 계기가 되었으며, 현재까지도 특이의 이론 용량(372 mAh/g)에 가까운 탄소 재료를 개발하기 위한 연구가 활발히 진행되고 있다[4, 5].

탄소 응극 재료는 고효율 충전, 고용량, 장기 사이를 안정성의 확보가 필요하기 때문이다. 현재까지 개발된 탄소 응극 재료는 크게 천연 흑연과 인공 흑연이 있다. 천연 흑연재료는 초기 충전용량과 효율은 좋지 않으나 장기적인 사용 안정성이 좋지 않다. 하지만 인공 흑연은 초기 충전용량은 천연흑연에 비해서 낮지만 장기 사이를 안정성이 좋고, 상대 밀도가 천연흑연에 비해 높기 때문에 비교적 고용량의 방전 용량을 얻을 수 있다[6-10].

인공 흑연 재료는 합성 과정과 열처리 조건에 의해 임자의 크기나 형상, 비표면적, tap 밀도, 절보기 밀도 등의 특성에 따라 다르다. 또한 전극 재료 공정인 slurry 제조, coating, pressing 공정에 적합해야 한다. 이러한 특성은 고밀도 충전 및 전기성의 관점으로부터 전지 성능에 큰 영향을 준다[11-13].

탄소재료는 응용활성질로 사용한 경우, 방전 전과정에서 부피가 가역적으로 변하므로, 활성질·활성질 또는 활성질·활성질 사이의 접촉이 나빠져서 사이의 회전의 원인이 될 수 있다. 고밀도화가 가능하면 용량이 약간 떨어지더라도 많은 양의 활성질을 투입할 수 있으므로 전지의 고용량화가 가능하다. 하지만 형상이 불규칙한 활성질의 경우에는 많은 양을 투입하는 것이 어려움으로 분만의 일도, 밀도, morphology 등의 특성은 중요한 변수로 작용하게 되어 이의 최적화가 필요하다[13-15].

많은 인공탄소재료들을 중 하나인 MCB(mesocarbon microbeads)는 이동화생산이, 열처리 온도 및 시간 그리고 추출 방법에 따라 분말의 밀도 제어가 가능하며, 절보기 밀도를 증가시킬 수 있다. 또한 원형의 활성전이기 때문에 전극 재료의 공정에 적합한 물질이다. 이러한 MCMB는 응용활성질로 그 수요가 증가할수록 있지만 일본이 시장을 거의 독점하고 있는 상황이어서 국산화 개발이 필요한 상황이다.
2. 실 정

2.1. MCMC 합성

MCMC는 유전요법으로 필요한 원료 물질은 광장 페노일글루타르산과 유전요법을 사용하다. 원료 물질은 3개의 운동 및 습도 측정은 ASTM(American standard test method) 방법에 따라 행해졌고, 그 결과는 Table 1의 같다.

합성 방법으로는 원료 코낼린 혹은 혼합 카이트에 원료 페니와 원료 물질을 각각 21의 비율로 페니를 반응비에 넣고, 상호 물

화학 분석기를에서 순수 속도 5℃/분으로 460℃까지 순수한 후 180분 동안 반응시켰다. 이로 혼합된 MP(oligophase pitch)

로부터 MCMC는 다음 두 가지 방법에 의해서 취득하였다. 혼

합 성료 고온의 MP를 상온의 용액 비을렌에 방출하여 100℃

에서 1시간 동안의 추출과정[방법 1]을 거치거나, MP의 혼합

성료 반응기에 용액을 직접 투입하여 1시간 동안 추출[방

법 2]하는 방법을 택하였다. 추출 과정 후 100℃ 기온의 연도

에서 어어하여 MCBM cake를 얻었다. MCMC cake 내부에

존재하는 추출 용액과 관류 물질을 제거하기 위해서 상온에

서 THF(tetrahydrofurane)로 세척한 후 여과하였다. 이것은

105℃의 건조기로 넣고 12시간동안 건조한 MCMC 분말을 얻었다.

2.2 MCMC 염처리

건조된 MCMC는 불화아, 단화, 흙화 전으로 염처리를 행

하였다. 우선 불화를 위해 muffle furnace(NEY, Co. Ltd.)를

사용하였다. 상온 하에서 공기 500℃/분으로 촉촉하기 조건에 위, 순수 속도 5℃/분으로 상온에

에서 300℃까지 순수한 후 1시간 동안 불화시켰다. 불화

화된 시료는 측정기 위에 tube furnace(GIST, Co. Ltd.)를

사용하였다. 질소를 100℃/분으로 반응기에 주입하여 질소

분위기를 조성한 다음, 2℃/분의 순수 속도로 상온에서

1400℃까지 순수하여 1시간 동안 탄화하였다.

Table 1. Characteristics of precursor pitches

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Solubility (wt%)</th>
<th>Element analysis (wt%)</th>
<th>Softening point (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>QI</td>
<td>TI</td>
<td>C</td>
</tr>
<tr>
<td>Raw pitch</td>
<td>14.0</td>
<td>35.4</td>
<td>92.95</td>
</tr>
<tr>
<td>Recycle pitch</td>
<td>–</td>
<td>38.3</td>
<td>92.627</td>
</tr>
</tbody>
</table>

단화된 시료의 측정화는 고온 측정화로(Themonic, Japan)에

고고, 금속(Al)분위기 하에서 10℃/분으로 순수하여 2650℃

에서 1시간 동안 흙화시켰다.

2.3. 분석

합성된 MCMC 임자의 평균 크기와 분포는 particle size analysis(Microtrac-S3000)로 확인하였다. 각 시료들의 결정성

및 총간 거리는 X-ray powder diffractometer(Rigaku, D-MAX-

3100) 보고서를 작성한 후 MCMC의 염처리 전후의 결

정성 및 표면 상태, 임자의 형상을 scanning electron micro-

scope(Philips, XL30S FEI)로 확인하였다. MP 내에 MCMC

소재의 측면 분포 및 크기, 광학적 활성은 측정된 MP 임장

을 mount press(HBD-MP001)에 PMMA(poly(methylmetha-

crylate)를 주입하여 100℃/분의 압력으로 140℃에서 10분

간 충전한 후 약 3cm의 두께로 시험을 제작하여 polisher

(HBD-PG001)로 표면처리 한 후 high resolution microscope

와 image analyzer(Leica DM MFK2)를 이용하여 관찰하

한다.

2.4. 전기 셀 제작 및 측정방법 설명

전극제조에 사용된 환경은 원료 차원과 중합 카이트로부터

합성된 MCMC-A, MCMC-B이며, 비교분석을 위해 사용된 상

용 제품으로써 MCMC 25시리즈(Osaka gas, Japan, 이하

MCMC-C라 정함)을 준비하였다.

활용체, 바인더(PVDF), 도전체(ketjen black)를 NMP(N-

methyl-2-pyrrolidone)에 혼합하여 2시간 동안 교반하여 슬뢰리

를 제조하였다. 이로 혼합된 copper foil에 film casting 한 후,

120℃의 진공 oven에서 12시간 간조시켜 두께 약 50μm의 전

극 판을 제조하였다. 제작된 전극판을 1cm x 1cm의 크기로

제단한 후에 120℃에서 8시간 동안 건조시켜 음극으로 사용

하였다. 또한 Li metal을 1cm x 1cm의 크기로 제단한 후에

상대전극으로 사용하였다.

반복 전극 제작은 다음과 같이 수행하였다. Glove box

(99.99%의 Ar분위기, 습도는 0.1% 이내, 상온하에서의 이

미 제작된 음극과 분리막(기공율 45%인 PP film)을 절연판

(EC:DEC=1:1 M LiPF6, MERCK)에 15분 동안 참합하였다.

전해질이 충분히 함질된 음극과 분리막, 그리고 Li metal을 제

단한 상대전극을 샘플리제격에 조립하여 진공포장하였다.

제작된 전극 셀은 충분한 안정화를 부여하기 위해 8시간 동

안 압력차체로 보관하였다. 이렇게 충분히 안정화된 전지는, 전

압 범위 0~1.5 V, 전류 밀도는 0.1 mA/mg에서 충전발기
Table 2. Characteristics of heat treated MCMB

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MCMB-A1<sup>a</sup></th>
<th>MCMB-B1<sup>b</sup></th>
<th>MCMB-A 2<sup>c</sup></th>
<th>MCMB-B 2<sup>d</sup></th>
<th>MCMB-C<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat treatment condition</td>
<td>C<sup>f</sup></td>
<td>G<sup>g</sup></td>
<td>C</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>1400</td>
<td>2650</td>
<td>1400</td>
<td>2650</td>
<td>2650</td>
</tr>
<tr>
<td>Particle size (µm)</td>
<td>13.92</td>
<td>13.54</td>
<td>16.54</td>
<td>15.48</td>
<td>12.58</td>
</tr>
<tr>
<td>BET surface area (m<sup>2</sup>/g)</td>
<td>4.18</td>
<td>4.23</td>
<td>3.77</td>
<td>4.10</td>
<td>3.18</td>
</tr>
<tr>
<td>Specific gravity (g/cm<sup>3</sup>)</td>
<td>0.86</td>
<td>1.07</td>
<td>0.87</td>
<td>1.11</td>
<td>1.07</td>
</tr>
<tr>
<td>d<sub>002</sub> (Å)</td>
<td>3.5021</td>
<td>3.3721</td>
<td>3.4919</td>
<td>3.3711</td>
<td>3.3944</td>
</tr>
<tr>
<td>g<sup>b</sup>(%)</td>
<td>-</td>
<td>79.1</td>
<td>-</td>
<td>80.2</td>
<td>53.0</td>
</tr>
</tbody>
</table>

^a MCMB was synthesized using raw pitch by extraction method-1; ^b MCMB was synthesized using mixed pitch by extraction method-1; ^c MCMB was synthesized using raw pitch by extraction method-2; ^d MCMB was synthesized using mixed pitch by extraction method-2; ^e MCMB is commercial product; ^f Carbonization; ^g Graphitization; ^h Degree of graphitization according to Maire and Mrings equation, g = (3.44-d₀₀₂)/(3.44-3.354).

3. 실험 결과 및 토의

3.1. MCMB의 물리·화학적 특성

본 연구에서 MCMB를 합성하기 위해 사용된 원료에 대한 특성은 Table 1에 나타났다. 원료 피처의 QI(Quinoline insoluble)은 14.0 wt%였으며, 순환 피처는 0.0 wt%였다. 또한 원조 분석 결과에 의하면, 두 종류의 피처가 거의 동일한 수치를 나타내는 것을 볼 수 있고, SP 결과는 합성 온도와 추출 온도를 예측하기 위해 사용되었다.

Table 2는 Table 1의 특성을 기반 피처를 이용하여 합성된 MCMB의 특성을 나타낸다. MCMB-Ax(x=1.2)와 Bx(X=1.2)에서 ^aA의 의미는 원료 피처만으로, ^bB는 원료피처와 순환 피처의 혼합된 원료로 합성한 것이다. 또한 두 시료의 x에 해당하는 1과 2는 앞서 기술한 바와 같이 각 추출 방법을 나타낸 것이다. 앞서 합성 방법에서 언급한 바와 같이 1은 반응 직 후 고온의 MP를 discharge line을 통하여 용액에 직접 투입하여 MCMB를 추출할 것이고, 2는 charge line으로 용액을 반응기에 직접 투입하여 MCMB를 추출할 것이다.

우선 원료 피처만으로 합성한 MCMB-A 시리즈의 특성은 다음과 같다. 1400°C에서 단화된 MCMB-A1C는 임자의 평균 크기가 13.92 µm이었고, 비 표면적은 4.18 m²/g, 외형 밀도는 0.86 g/cm³, 충전 거리는 3.5021 Å이었다. 이들을 2650°C에 서 희석화한 시료인 MCMB-A1는 평균 임자크기가 13.54 µm, 비표면적은 4.23 m²/g, 외형 밀도 1.07 g/cm³, 충전 거리는 3.3721 Å이었다.

1400°C에서 단화한 MCMB-B1C는 임자의 평균 크기가 16.54 µm이었으며, 비 표면적은 3.77 m²/g, 외형 밀도는 0.87 g/cm³, 충전 거리는 3.4919 Å이었고, 이들 희석화한 시료인 MCMB-B1G는 평균 임자크기 15.48 µm, 비표면적은 4.10 m²/g, 외형 밀도 1.11 g/cm³, 충전 거리는 3.3711 Å이었다. 이성의 결과로부터 희석과 과정을 거친 후에 MCMB의 평균 임자 크기와 충전거리는 감소하였으며, 외형 밀도와 비표면적은 증가함을 알 수 있다. 한편 추출 방법 2를 통해 얻어진 MCMB를 단화 과정을 거쳐 희석과 처리 후 시료인 MCMB-B2가 평균 임자 크기가 12.85 µm, 비표면적은 3.18 m²/g, 외형 밀도 1.07 g/cm³, 충전 거리는 3.3944 Å이었으며, MCMB-B2G는 평균 임자크기 15.02 µm, 비표면적은 4.23 m²/g, 외형 밀도 1.03 g/cm³, 충전 거리는 3.3745 Å로서 출받원료에 따라 희석화 과정에서 단초배부 구조의 제배열로 인하여 MCMB의 충전거리의 외형 밀도, 비에 차이점이 나타났다.

Fig. 1에는 단초의 열처리 온도에 따라 수반되는 XRD 분석
선정되면 전기적 성능도 보다 향상되어, MCMB의 표면에 부착되어 있던 미세구체가 열처리가 진행됨에 따라 녹거나 일부분이 산화되었기 때문이라고 판단 된다. MCMB-A와 MCMB-B의 경우에는 비교적 입자가 작고, 입자의 평균크기와 형상이 불균일하다. 상용 제품인 MCMB-C의 경우는 입자의 크기는 대체로 규일하나, 형상은 원형이 아닌 타원형인 것이 상당수 발견되었다.

3.2 MCMB의 충방전 특성
MCMB-A, B와 C를 원료로 하여 반복 전지 cell을 제작한

Fig. 2. SEM photographs of MCMB (left: Carbonized MCMB, right: Graphitized MCMB).
Table 3. Charge/discharge properties of various MCMB

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Carbonized MCMB</th>
<th>Graphitized MCMB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1<sup>a</sup></td>
<td>B1<sup>b</sup></td>
</tr>
<tr>
<td>1st</td>
<td>284.50</td>
<td>240.80</td>
</tr>
<tr>
<td></td>
<td>D<sup>d</sup></td>
<td>195.81</td>
</tr>
<tr>
<td></td>
<td>E<sup>e</sup></td>
<td>68.83</td>
</tr>
<tr>
<td>2nd</td>
<td>C</td>
<td>193.91</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>191.65</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>98.83</td>
</tr>
<tr>
<td>3rd</td>
<td>C</td>
<td>195.95</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>194.51</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>99.27</td>
</tr>
<tr>
<td>5th</td>
<td>C</td>
<td>198.24</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>195.85</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>98.79</td>
</tr>
<tr>
<td>10th</td>
<td>C</td>
<td>194.80</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>193.26</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>99.21</td>
</tr>
<tr>
<td>15th</td>
<td>C</td>
<td>191.42</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>190.32</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>98.94</td>
</tr>
</tbody>
</table>

^a MCMB was synthesized using raw pitch by extraction method-1; ^b MCMB was synthesized using mixed pitch by extraction method-1; ^c MCMB is commercial product; ^d MCMB was synthesized using raw pitch by extraction method-2; ^e MCMB was synthesized using mixed pitch by extraction method-2; ^f Charge capacity; ^g Discharge capacity; ^h Cycle efficiency.

후, 충방전 용량 및 효율은 TOSCAT 충방전기를 이용하여 1~15 사이에 범위에서 측정했다.

Table 3은 단화와 흐연화한 MCMB의 충방전 특성을 나타낸 결과이다. 먼저 단화한 시료인 MCMB-A1, B1, C를 실험 보면서, 초기 충방 전용량은 각각 284.50 mAh/g, 240.80 mAh/g, 258.29 mAh/g이고, 방전 전용량은 195.81 mAh/g, 155.59 mAh/g, 182.11 mAh/g이다. 이때 초기 충방전 용량은 64~70% 정도로 낮게 나타나고 있다. 초기 방전 용량이 (155~195 mAh/g)로 작은 이유는 전해액 부واب음에 의해 방전 전용량이 감소하는 것으로 볼 수 있다. 2번째 사이클에서의 방전 전용량은 191.65 mAh/g, 152.03 mAh/g, 179.20 mAh/g으로 초기 사이클에 비해 방전 전용량은 적었지만, 충방전 효율은 95% 가량으로 비교적 안정한 값을 보인다. 15번째 사이클에서의 방전 전용량은 각각 190.32 mAh/g, 126.11 mAh/g, 146.88 mAh/g이며, 99%의 효율을 보였다. 또한 15번째 사이클의 방전 전용량을 초기 사이클과 비교하면 2.8%, 18.9%, 19.3%의 용량이 감소하였다. 그 중 MCMB-A1은 B1이나 C에 비해 용량이 높고 용량의 감소율은 가장 적었다. 따라서 MCMB-A1은 소형 건지 제품으로 사용이 가능한 것으로 보이며, MCMB-B2와 MCMB-C는 사이클 횟수가 증가할수록 용량이 급격히 줄어들기 때문에 용구 제조로 부적절하다고 판단된다.

Table 3의 흐연화한 MCMB-A1, B1, C의 초기 사이클의 방전 전용량은 각각 213.45 mAh/g, 293.28 mAh/g, 290.14 mAh/g이며, 충방전 효율은 83~86% 사이이다. 초기 충방전 효율이 낮은 것은 리튬 intercalation 과정 중, 전해액의 부반응에 의한 것으로 판단된다. 2번째 사이클에서의 방전 전용량은 각각 212.77 mAh/g, 293.53 mAh/g, 289.44 mAh/g였으며, 충방전 효율은 약 96%를 나타내고 있다. 이후 사이클 횟수가 증가하여 15번째 사이클에서는 각각 207.68 mAh/g, 287.42 mAh/g, 279.22 mAh/g였으며, 충방전 효율은 모두 99%를 상회하는 것으로 나타났다. 이 결과에서는 원료 순환물의 혼합으로 합성된 MCMB-B1이 MCMB-A1과 MCMB-C보다 비교적 우수한 방전 용량을 나타냈다. 용량의 감소율도 약 2% 정도로 A나 C의 용량 감소율 각각 2.9%와 3.7%에 비해 적었다.

이제까지 추출방법 1에 의해 제조된 MCMB-A와 B의 특성을 살펴본 결과, 아직 용량이 300 mAh/g를 넘지 않고 있다. 이것은 Fig. 2에서 보는 바와 같이 표면 위의 많은 부착물에 의한 초기 부반응이 크기 때문인 것으로 사료된다. 한편 추출방법 2에 의해 제조된 시료의 전기적 특성을 살펴보면 MCMB-A2와 B2의 초기 방전 전용량은 243.48 mAh/g, 298.76 mAh/g이며, 15번째 이후의 방전 전용량은 232.38 mAh/g, 279.19 mAh/g였다. 이 때 용량의 감소율은 각각 4.5%와 6.8%이다.

이 결과로부터 추출방법 1에 의해 얻은 MCMB보다 초기 방전 전용량은 높았으나 사이클 안정성은 낮은 경향을 보였다. 여기서 초기 충방전 전용량이 높은 이유는 추출방법 1의 시료에 비해 표면 상태가 개선되었기 때문으로 볼 수 있으며, 충방전 전용량의 감소율이 크고, 효율은 낮은 것은 흐연화도가 상대적으로 낮기 때문이다.
Efficiency and charge/discharge capacity of MCMB-A. (a) carbonized MCMB; (b) graphitized MCMB.

Fig. 3. Efficiency and charge/discharge capacity of MCMB-A. (a) carbonized MCMB; (b) graphitized MCMB.

Fig. 4. Voltage of MCMB-A1 as time increase. (a) carbonized MCMB; (b) graphitized MCMB.
Fig. 5. Efficiency and charge/discharge capacity of MCMB-B1. (a) carbonized MCMB; (b) graphitized MCMB.

Fig. 6. Voltage of MCMB-B1 as time increase. (a) carbonized MCMB; (b) graphitized MCMB.

Fig. 7. Efficiency and charge/discharge capacity of graphitized MCMB-A2.
Fig. 8. Efficiency and charge/discharge capacity of graphitized MCMB-B2.

Fig. 9. Efficiency and charge/discharge capacity of MCMB-C. (a) carbonized MCMB; (b) graphitized MCMB.

Fig. 10. Voltage of MCMB-C as time increase. (a) carbonized MCMB; (b) graphitized MCMB.
따라 초기 방전용량을 두 번째 반응 이후에서 연속적으로 유지하기 어렵다는 것을 보여주는 증거이며, 이미 많은 보고서에 발표된 바 있다[12]. 하지만 시간에 따른 전압의 변화는 20 번째 사이클 후에도 안정하게 유지되었다. Fig. 9의 흡착염시료의 경우에는 용량이 300 mAh/g 전후로 비교적 높은 편이며, 시간에 따른 용량의 변화가 안정적으로 유지되었다. 하지만 시간과 전압의 곡선에서 MCMB-B와 같이 눈에 세게 용량이 감소할음을 보여주었다.

모든 탄소재료의 최초 방전시에는 1.0 V에서 전해액의 환원 반응에 의한 전위 평균 구역이 나타나고 있으며 0.2 V 이하에 서 리튬의 intercalation에 의한 전위 평균 구역이 나타난다. 하지만 충전시에는 리튬의 deintercalation어의 다른 부분들은 나타나지 않았다. 대개의 경우 리튬의 최초의 intercalation시에는 전해액의 부전용이 조금씩 나타나며, 단과 처리한 시료와 흡착염 처리한 시료에 리튬의 intercalation되는 양상이 다를 수 있다. 이로부터 흡착염한 재료와 단화한 재료는 서로 다른 반응 기구를 갖는다는 것을 알 수 있었다.

4. 결 론

본 연구에서는 클라트 피치로부터 합성한 MCMB를 단화와 흡착염의 열처리를 거친 후 충전방전 실험을 통하여 전극 성능 시험을 하였고, 상용 MCMB의 비교함으로써 전극으로서의 활용 여부를 확인하여 다음과 같은 결과를 얻었다.

1. 단화한 MCMB의 경우 초기 방전 용량은 MCMB-A, B, C 모두 200 mAh/g 이하이며, 15회 충전-반전 과정을 거친 후 초기 비가격 용량이 약 60% 감소했으며, 충전 방전 효율은 첫 번째 사이클을 제외하고 거의 100%가 가까웠다. 그러나 시간에 따른 전압변화가 매우 급격히 진행되어 안정한 방전 효과는 형성되지 않았다.

2. 흡착염화된 MCMB의 초기 방전 용량은 MCMB-A, B, C 모두 200 mAh/g 이상이다. 순환피지와 원료피지의 흡착 원료로 합성한 MCMB-B 시리즈의 방전 용량은 290.0 mAh/g 내외이다. 충전방전 효율은 MCMB-A, B, C 모두 100%에 가까웠으나, 충전방전 용량은 MCMB-A와 MCMB-B의 초기 방전 용량은 원료만으로 합성한 MCMB-A 보다 높았으며, 시편품인 MCMB-C와 동등한 방전 비용량과 효율을 보았다. 하지만 15번 이상에서는 MCMB-A의 충전 방전 비용량과 안정성 면에서 우월한 면을 보였다.

References